t _Brvan '; ;]0—5?3;51

| dand OSS

g * i#
N Tt FLUTTeR OF
(MASA) 22 D cscL nld

(NASA-THM-418U)
SHARPE EFFFCTS
FLAT-PLATT WINGS o

H1/05 02647438







NASA Technical Memorandum 4180

An Experimental Study of Tip
Shape Effects on the Flutter
of Aft-Swept, Flat-Plate Wings

Bryan E. Dansberry, José A.. Rivera, Jr.,
and Moses G. Farmer

Langley Research Center

Hampton, Virginia

NASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1990






| “'U

Abstract

The effects of tip-chord orientation on wing flutter
are investigated experimentally using six cantilever-
mounted, flat-plate wing models. Experimentally
determined flutter characteristics of the six models
are presented for both subsonic and transonic Mach
number ranges. While all models have a 60° leading-
edge sweep, a 40.97° trailing-edge sweep, and a root
chord of 34.75 in., they are subdivided into two series
characterized by a higher aspect ratio and a lower as-
pect ratio. Each series is made up of three models
with tip-chord orientations that are parallel to the
free-stream flow, perpendicular to the model mid-
chord line, and perpendicular to the free-stream flow.
Although planform characteristics within each series
of models are held constant, structural characteris-
tics such as mode shapes and natural frequencies are
allowed to vary.

Introduction

The trend toward maximizing the aerodynamic
performance and structural efficiency of new airplane
designs by employing new and novel aerodynamic
and structural concepts may lead to unconventional
geometric configurations. These configurations could
have serious aeroelastic deficiencies.

Historically, parametric wind-tunnel studies such
as references 1 through 5 have played a major role in
increasing the understanding of flutter phenomenon
so that expensive fixes to aircraft design are avoided.
The present investigation was undertaken in order
to obtain experimental flutter data for models with
unusual tip-chord orientations. These data may be
useful in assessing the importance of including flutter
considerations in designing planform tip shapes.

The investigation was conducted in the Langley
Transonic Dynamics Tunnel. Six flat-plate models
were tested, with tip-chord orientation and aspect
ratio as the primary parameters being investigated.
Results are presented for two series of models: a
higher aspect ratio series (H-series) and a lower as-
pect ratio series (L-series). Each series is made up
of three models representing three tip-chord orienta-
tions: parallel to the free-stream flow (models H1 and
L1), perpendicular to the model midchord line (mod-
els H2 and L2), and perpendicular to the free-stream
flow (models H3 and L3). While tip-chord orienta-
tion was varied within each series, other planform
variables such as leading-edge sweep, trailing-edge
sweep, and root chdrd were held constant. There-
fore, a comparison of the models within each series
provides an assessment of tip-chord orientation ef-
fects. A comparison of like-numbered models in the
two series shows effects due primarily to aspect ratio.

While every effort was made to hold geomet-
ric variables constant within each series, structural
characteristics such as mode shapes and natural fre-
quency were allowed to vary. It should be noted,
therefore, that the results shown in this report rep-
resent integrated aerodynamic and structural effects.

Symbols

AR  full-span aspect ratio, 4—?'3
B semispan, in.

b reference length, in.

fr flutter frequency, Hz

fn structural frequency corresponding to
nth natural mode, Hz

M Mach number

m calculated mass of exposed planform,
slugs

2
q dynamic pressure, &‘7/—, psf
Re Reynolds number, %{

S surface area of hypothetical full-span
model, in?

|4 velocity, fps
Vi velocity at flutter onset, fps

Vi flutter speed index, %

Ve reference volume, ft3
5 ratio of specific heats

H m
u mass ratio, oV
p density of test medium, %‘F
wr reference circular frequency, S%C
Models

Physical Description

Figure 1 shows the planform geometry of the six
models. All models have an identical leading-edge
sweep (60°), trailing-edge sweep (40.97°), and root-
chord length (34.75 in.). They are flat-plate semispan
wings cut from 0.125-in-thick aluminum sheet (6061-
T6). The leading edge of these models was hand filed
to roughly semicircular shape, and the trailing edge
and tip were left blunt. The 4.0-in. tab extending
from leading to trailing edges at the root of each
model was used for mounting. During testing, it
was sandwiched between two angle irons to provide a
cantilevered, fixed-root condition. When mounted in



the test section, a splitter plate positioned along the
root chord served to isolate this mounting hardware
from the free-stream flow.

The exposed planform area of models H1 through
H3 was 627.5 in?2. As shown in figure 1, these
model planforms differed from one another only in
tip geometry. Model Hl1 had an aspect ratio of
2.4 and a tip chord oriented parallel to both the
root chord and the free-stream flow field. Model H2
had an aspect ratio of 2.8 and a tip chord oriented
perpendicular to the midchord line. Model H3 had
a tip chord oriented perpendicular to the root chord
and an aspect ratio of 3.1. The weight of the exposed
planform area was determined by calculating the
weight of the mounting tab and subtracting it from
the total measured weight of each model. Since the
area of each model within the H-series was the same,
the calculated weight of the exposed planform area
of all models within the series was a constant, 7.86 1b
(0.244 slug).

Models L1 through L3 were obtained by modify-
ing models H1, H2, and H3, respectively. The tips of
these models were cut off, reducing the exposed plan-
form area of the models by 19.2 percent to 507.1 in2.
In making these cuts, the tip orientations of mod-
els H1, H2, and H3 were preserved. The aspect ratio
is 1.4 for model L1, 2.1 for model L2, and 2.5 for
model L3. The weight of the exposed planform area
for this series of models was 6.18 1b (0.192 slug).

Vibration Characteristics

A ground vibration test was performed on each
of the models to determine their natural frequencies
and node lines. First, an impact test was employed
to determine the natural frequencies of the models.
Then a 1-1b shaker was attached to the lower surface
and used to drive the wings at each of these natural
frequencies while a roving velocity probe was used
to locate the node lines. The shaker was usually
positioned near the wingtip along the leading edge.
Potential effects of the shaker location were checked
by retracing several mode shapes with the shaker
attached at other locations (such as at midwing along
the leading edge or at the wingtip near the trailing
edge).

Table I shows the experimentally determined
model natural frequencies. These frequencies were
measured while the models were mounted in the
test section. Sketches of the node lines correspond-
ing to these frequencies are presented in figures 2(a)
through (f). Several node lines shown in these figures
terminate before reaching the wing root. In these
cases, it was not possible to experimentally track the
node line any further.

2

Flutter Experiments

Wind Tunnel

This investigation was conducted in the Langley
Transonic Dynamics Tunnel (TDT). The TDT is
a closed-circuit, single-return wind tunnel primarily
used for aeroelastic testing. It has a slotted test
section with a square cross section (with cropped
corners) that measures 16 ft on a side. The TDT
is a variable-density tunnel capable of operating at
pressures ranging from near vacuum to atmospheric
and at speeds up to Mach 1.2. Either air or R-12
can be employed as a test medium; R-12 is a heavy
gas (y = 1.14) which, at the same Mach number and
dynamic pressure, results in a much higher Reynolds
number than can be achieved in air. Air was used
primarily for the present study with the exception
of one run performed in R-12. A more detailed
description of the TDT and the aeroelastic testing
it is typically used for can be found in references 6
and 7.

Test Apparatus

Figure 3 shows model Hl mounted in the TDT
test section. The models were mounted on a splitter-
plate apparatus to place them outside the tunnel-
wall boundary layer. This splitter plate was located
along the root chord of the models and isolated the
mounting hardware from the free-stream flow. The
forward edge of the splitter plate was located 24 in. in
front of the leading edge of the model. The splitter
plate itself measured 76 in. streamwise and 36 in.
top to bottom. The splitter plate and model were
sidewall mounted to a turntable set in the test section
wall, enabling test engineers to remotely adjust the
model angle of attack during testing.

In order to fix the point at which the wing bound-
ary layer became turbulent, a transition strip of num-
ber 30 grit was placed on the upper and lower sur-
faces of each model, 0.5 in. from the leading edge.
These strips were 0.25 in. wide and extended from
root to tip. Two strain-gage bridges were mounted
on the surface of each model to measure root bend-
ing and torsion moments. These gages were located
2.5 in. out from the root chord along the midchord
line.

Test Procedure

During flutter tests, the response of the models
was visually observed by the test engineer. Qut-
puts of the two strain-gage bridges were also mon-
itored on a strip chart recorder. Flutter conditions
were recorded when sustained or diverging oscilla-
tions were observed. A peak-hold frequency analyzer
was used to identify the dominant flutter frequency



and monitor wing response as flutter conditions were
approached. The mean strain-gage output was dis-
played on a separate strip chart channel and used as
a measure of the static aerodynamic rolling moment
on the model. This moment was kept to a near zero
lift condition by adjusting the angle of attack of the
model during the tests.

Figure 4 illustrates schematically how the flut-

ter boundaries were defined. Tests began at a
reduced total pressure so that Mach number and
dynamic pressure were well below expected flutter
conditions. A series of “passes” through the tunmnel
envelope, shown by the lines in the figure, were then
made. These passes consisted of slowly increasing
Mach number and dynamic pressure by increasing
the tunnel motor speed until flutter was encountered
or the motor limit was reached. At the end of each
pass, after a flutter point had been identified or the
motor limit had been reached, tunnel motor speed
was reduced; air (or R-12) was then bled into the tun-
nel to raise the density of the test medium (thereby
increasing the dynamic pressure corresponding to a
given Mach number) and a new pass commenced.
This process was repeated until the flutter boundary
was defined.

It should be noted that only the portion of the
flutter boundary ranging from the subsonic region to
the minimum point of the transonic dip is determined
when using this procedure. No attempt was made to
define the supersonic side of the transonic dip for any
of the models tested in this investigation.

Results and Discussion

A tabulation of the data obtained in this investi-
gation is presented in table II. Flutter results of the
tests performed in air are shown graphically in fig-
ures 5 and 6. In these figures, the flutter frequency
and dynamic pressure are plotted against Mach num-
ber. The flutter frequency of all models was between
the first and second fundamental frequencies. For all
models, the flutter frequency decreased in value as
Mach number increased. In the Mach number versus
dynamic pressure portion of the plots, the dashed
lines with symbols at both ends represent the last
“pass” where flutter was not encountered. This in-
formation is included to further define the bottom of
the transonic dip.

It can be seen in figure 5 that the flutter bound-
aries of the H-series models are grouped closely to-
gether and are similar in character. The flutter
boundaries of the L-series models, shown in figure 6,
are more separated than those of the H-series. This
may result from the larger differences in aspect ratio
and geometry within the lower aspect ratio models
(the L-series) than for the higher aspect ratio models

(the H-series), where the tip geometry changes affect
a smaller portion of the wing. In the subsonic region,
flutter boundaries for the L-series models are much
higher than those for the H-series. However, the
L-series models show a more pronounced transonic
dip than the H-series show.

It should also be noted that for all six models the
bottom of the transonic dip occurs above a Mach
number of 1.0. Other highly swept models hav-
ing flutter boundaries with transonic dips at similar
Mach numbers can be found in references 8 and 9.

Although figure 5 shows that the flutter boundary
of models H1 and H3 are almost identical, model H2,
with a tip orientation perpendicular to the midchord
line, has a lower flutter boundary than the models
with other tip orientations. As shown in figure 6,
this result held true for the L-series as well; the
flutter boundary of model L2, which has a tip-chord
orientation identical to model H2, is lower than those
of models L1 and L3.

Figures 7 and 8 show the flutter boundaries of the
six models as variations of Mach number with the
nondimensional parameter flutter speed index. In
the parameter flutter speed index, velocity at flutter
onset is nondimensionalized using a reference length,
a reference circular frequency, and mass ratio. For
moderately swept and tapered planforms, the de-
termination of a reference length is straightforward.
Historically, either the semichord at the ¥:-span lo-
cation or the root semichord is used. For tapered
wing planforms, the root semichord may not be a
representative chord. Also, for models L2 and L3
the ¥-span station is located in the tip geometry re-
gion. Selection of the semichord at this span station
would be inappropriate for these models. For the
data shown in figure 7, the authors chose to use the
semichord at the 3:-span location of model H1 as the
reference length for all the H-series models. Likewise,
in figure 8 the semichord at the 3-span location of
model L1 is used as the reference length for all the
L-series models.

The circular frequency corresponding to the first
torsion mode is commonly used as the reference fre-
quency in calculating V;. Unfortunately, for highly
swept and tapered wings the bending and torsion
modes are coupled such that determination of the
first predominantly torsional mode is often difficult.
For the L-series of models, the second structural
mode was used as the reference frequency. Careful
examination of the node line sketches in figure 2 will
show that the choice of the second structural mode
for the L-series was reasonably straightforward. The
choice of the reference frequency for the H-series was
less obvious. In this series, the second and third
structural modes both show significant torsional
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characteristics. However, the third structural mode
was considered by the authors to be the first mode
predominantly torsional in nature. For this series
of models, therefore, the circular frequency corre-
sponding to the third mode was used as the reference
frequency.

In calculating the mass ratio term for models H1
and L1, the reference volume used was the volume
of a conical frustum having a base diameter equal to
the root chord, a height equal to the wingsemispan,
and a top diameter equal to the model tip length.
For the other models, the reference volume consisted
of the volume of a conical frustum, generated in the
same manner as for models H1 and L1, added to
the volume of a cone. For these models, the local
wing chord corresponding to the break in the trailing
edge was used as the top diameter of the conical
frustum and as the base diameter of the cone. The
span station at which the break in the trailing edge
occurs was used as the height of the conical frustum.
The height of the cone was generated by subtracting
this span station from the total span of the model.
The value of mass ratio varied from near 400 for the
H-series models (200 for the L-series) in the transonic
region, to under 20 (both series) at the lowest Mach
numbers.

Model H1 was tested in both air and R-12 to de-
termine the effects of mass ratio and Reynolds num-
ber. Figure 9 shows the air and R-12 test results for
model H1 in both dimensional and nondimensional
form. These boundaries are nearly identical subson-
ically, with only a slight difference in the transonic
dip, even though Reynolds number and mass ratio
varied substantially from air to R-12 (see table II).
It is possible that the small differences in the air and
R-12 boundaries in the transonic region are mass ra-
tio effects; at these Mach numbers, however, the mass
ratio term is at its highest value, whereas mass ratio
effects usually occur when this value is very low.

Concluding Remarks

A preliminary experimental study was performed
which attempted to define the integrated aerody-
namic and structural effects of tip geometry on flat-
plate wing flutter. Results were shown for three
tip-chord orientations: parallel to the free-stream
flow, perpendicular to the model midchord line, and
perpendicular to the free-stream flow. While tip-
chord orientation was varied, other planform vari-
ables such as leading-edge sweep, trailing-edge sweep,
root chord, and wing area were held constant. How-
ever, the dynamic characteristics of the models (i.e.,
mode shapes and natural frequencies) were allowed to
vary. For each tip-chord orientation, flutter bound-

aries were defined for two models, each representing
a different aspect ratio.

While the flutter boundaries of the higher aspect
ratio model were very similar in character, those of
the lower aspect ratio series showed more effect of tip
shape, particularly in the transonic region. For mod-
els of identical tip-chord orientation, the reduction in
aspect ratio resulted in a large increase in flutter dy-
namic pressure in the subsonic region. However, in
the transonic region the reduction in aspect ratio pro-
duced boundaries with a pronounced transonic dip,
resulting in a much smaller gain in flutter dynamic
pressure than was seen in the subsonic region.

Compared with the other orientations tested, a
tip chord oriented perpendicular to the wing mid-
chord line appeared to reduce the flutter dynamic
pressure by a modest amount.

NASA Langley Research Center
Hampton, VA 23665-5225
March 29, 1990
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Table I. First Five Measured Natural Frequencies

Frequency, Hz, for model—
H1 H2 H3 L1 L2 L3
i 44 41 41 8.0 8.1 7.8
f2 16.7 17.1 17.4 230 25.0 27.8
f3 28.8 27.2 26.4 51.0 44.1 40.5
fa 40.0 42.0 42.8 54.2 62.5 61.1
fs 62.4 63.6 61.2 87.1 99.6 974
Table II. Summary of Data
Q1 ny py Rea ff) ‘/1‘7 m’ Wr, b)
M psf ft/sec E%IF : Hz % ft3 slugs i 1/sec in. Vi
Model H1 (air)

1.05 | 49.7 | 1094.3 | 0.000083 | 0.27 x 106 7.120 | 0.244 | 4129 181.0 | 852 | 0419
.99 54.6 1034.7 .000102 .31 8.2 0.491 7.120 244 336.0 181.0 8.52 439
.92 64.6 974.7 .000136 .38 9.4 .563 7.120 244 252.0 181.0 8.52 478
.85 69.3 913.8 .000166 43 104 .623 7.120 .244 206.4 181.0 8.52 495
71 724 778.4 .000239 .0l 11.9 713 7.120 244 1434 181.0 8.52 .506
o7 74.4 630.8 .000374 .63 12.3 137 7.120 244 91.6 181.0 8.52 513
42 75.0 476.0 .000662 81 12.5 749 7.120 244 51.8 181.0 8.52 015
.23 73.7 257.0 002232 1.50 13.2 .790 7.120 244 154 181.0 8.52 510

Model H1 (R-12)

1.06 56.8 520.1 0.000420 0.85 x 108 83 0.497 7.120 0.244 81.6 181.0 8.52 0.448
.98 59.5 481.2 .000514 .96 9.1 .545 7.120 244 66.7 181.0 8.52 .458
93 64.8 459.1 .000615 1.09 9.3 .557 7.120 244 55.7 181.0 8.52 479
.86 68.2 425.9 .000752 1.24 10.2 611 7.120 244 45.6 181.0 8.52 491
.72 73.7 356.9 .001157 1.58 116 .695 7.120 244 29.6 181.0 8.52 .510
.58 74.9 287.0 .001819 1.99 12.2 731 7.120 244 18.8 181.0 8.52 515
43 76.7 217.0 .003258 2.69 12.7 .760 7.120 .244 10.5 181.0 8.52 521

Model H2 (air)

1.03 44.3 1072.7 0.000077 0.25 x 108 8.0 0.468 7.066 0.244 448.5 170.9 8.52 0.417
97 53.6 1020.2 .000103 31 9.0 .526 7.066 244 335.3 170.9 8.52 459
87 62.8 930.7 000145 .38 10.3 .602 7.066 244 238.1 170.9 8.52 497
.80 66.4 866.2 000177 43 11.0 .643 7.066 244 195.1 170.9 8.52 511
.68 67.8 750.1 .000241 .50 12.1 .708 7.066 244 143.3 170.9 8.52 .516
.55 68.5 607.7 .000371 .61 12.6 737 7.066 .244 93.1 170.9 8.52 .519
.40 69.1 452.2 .000676 .78 13.1 .766 7.066 244 51.1 170.9 8.52 521
.22 68.4 244.0 .002298 1.48 13.6 .795 7.066 244 15.0 170.9 8.52 519

Model H3 (air)

1.06 49.3 1110.2 0.000080 0.26 x 108 8.5 0.489 7.021 0.244 434 4 165.9 8.52 0.452
.99 53.5 1055.7 .000096 29 8.9 511 7.021 244 362.0 165.9 8.52 471
.92 64.5 992.3 000131 37 10.3 .592 7.021 244 265.3 165.9 8.52 517
.84 | 694 9144 .000166 .42 11.1 638 | 7.021 244 | 2094 165.9 | 8.52 .536
72 72.9 799.7 .000228 .50 12.8 .736 7.021 244 1524 165.9 8.52 .550
.58 75.2 652.7 .000353 .61 12.9 741 7.021 244 98.5 165.9 8.52 .558




Table II. Concluded

g, Vf» 12 Re, ff7 Vi, m, Wr, b,
M psf ft/sec "'l—f;‘? }1{ Hz % 3 slugs u 1/sec in. Vr
Model L1 (air)

1.05 107.2 1103.7 | 0.000176 | 0.57 x 106 11.9 | 0.517 | 6.302 0.192 173.1 144.5 11.17 0.624

1.02 113.8 1083.1 .000194 .61 12.2 .530 6.302 192 157.0 144.5 11.17 .643

1.00 122.3 1064.1 .000216 .66 12.6 .548 | 6.302 192 141.0 144.5 11.17 .666
.98 130.2 1050.4 .000236 .71 13.5 587 | 6.302 192 129.1 144.5 11.17 .687
91 145.0 6.302 192 144.5 11.17
.85 149.3 930.3 .000345 .88 17.0 739 | 6.302 192 88.3 144.5 11.17 .736
.78 149.2 861.6 .000402 .94 17.4 757 | 6.302 192 75.8 144.5 11.17 .736
70 | 1495 780.4 .000491 | 1.03 17.8 774 | 6.302 192 62.0 | 1445 | 11.17 737
.56 147.3 631.8 .000738 1.23 184 .800 | 6.302 192 413 144.5 11.17 731
.50 1474 560.9 .000937 1.37 18.5 804 | 6.302 192 32.5 144.5 11.17 731
.36 138.6 409.0 .001657 1.76 19.2 .835 6.302 192 184 144.5 11.17 709
32 | 1373 358.0 .002143 | 1.99 19.4 843 | 6.302 192 142 | 1445 | 11.17 .706

Model L2 (air)

1.05 51.9 1092.3 0.000087 | 0.28 x 106 11.0 | 0.440 6.050 | 0.192 364.8 157.1 11.17 0.391

1.02 58.1 1067.3 .000102 .32 11.3 452 6.050 192 311.1 157.1 11.17 414

1.00 66.3 1051.2 .000120 .37 11.9 476 | 6.050 192 264.5 157.1 11.17 442
97 78.8 1031.9 .000148 44 12.8 512 6.050 192 2144 157.1 11.17 482
96 89.6 1023.7 .000171 .50 13.5 .540 | 6.050 192 185.6 157.1 11.17 .514
.94 100.5 1007.5 .000198 57 14.5 .580 | 6.050 192 160.3 157.1 11.17 .544
91 | 108.0 982.0 .000224 62 15.1 .604 | 6.050 192 | 1417 | 1571 | 1117 .564
.89 116.0 965.3 .000249 .67 15.8 .632 6.050 192 127.5 157.1 11.17 584
.85 119.5 927.2 .000278 .72 16.3 .652 6.050 .192 114.2 157.1 11.17 .593
.81 124.6 889.4 000315 77 174 .696 6.050 .192 100.7 157.1 11.17 .606
.70 128.2 778.6 .000423 .88 18.3 732 6.050 192 75.0 157.1 11.17 615
.58 | 1284 653.1 .000602 | 1.04 19.2 .768 | 6.050 192 527 | 1571 | 11.17 615
.46 129.4 532.1 .000914 1.24 20.1 .804 | 6.050 192 34.7 157.1 11.17 618
.33 118.8 20.7 .828 | 6.050 192 157.1 11.17
.29 114.5 328.0 .002129 1.80 20.7 .828 | 6.050 192 14.9 157.1 11.17 .581

Model L3 (air)

1.03 82.2 1076.0 0.000142 0.45 x 108 12.8 0.460 | 5.867 | 0.192 230.5 174.7 11.17 | 0.436
.98 85.2 1038.5 .000158 .48 12.8 .460 5.867 .192 207.1 174.7 11.17 444
98 91.2 1042.0 .000168 .50 13.2 A75 5.867 .192 194.8 174.7 11.17 459
97 98.5 1034.7 .000184 .54 13.6 489 5.867 192 177.9 174.7 11.17 477
.96 105.3 1028.7 .000199 .59 14.0 904 5.867 192 164.4 174.7 11.17 493
.95 113.3 1019.5 .000218 .63 14.8 .532 5.867 192 150.1 174.7 11.17 .512
.94 122.6 1008.7 .000241 .69 15.6 .561 5.867 192 135.8 174.7 11.17 .532
91 | 1306 983.6 .000270 .75 16.4 .590 | 5.867 JA92 | 1212 | 1747 | 1117 .549
88 | 1385 953.0 .000305 .81 16.8 .604 | 5.867 192 | 1073 | 1747 | 11.17 .566
.83 143.1 905.6 .000349 .87 18.0 .647 | 5.867 192 93.8 174.7 11.17 .575
.78 148.7 856.9 .000405 .95 18.8 676 5.867 192 80.8 174.7 11.17 .586
.71 151.2 789.6 .000485 1.03 204 734 5.867 192 67.5 174.7 11.17 591
64 | 151.5 20.8 .748 | 5.867 .192 174.7 | 11.17
.51 154.2 580.9 .000914 1.39 21.6 arT 5.867 .192 35.8 174.7 11.17 597
37 151.0 421.0 .001704 1.86 22.8 .820 5.867 192 19.2 1747 11.17 .991
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Figure 3. Model H1 mounted in TDT test section.
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Figure 4. Test procedure used in TDT to determine typical flutter boundary.
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Figure 5. Flutter characteristics of H-series models in air.
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Figure 6. Flutter characteristics of L-series models in air.
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Figure 7. Nondimensional flutter characteristics of H-series models.
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Figure 8. Nondimensional flutter characteristics of L-series models.
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